Write your name here Surname		Other names
Pearson Edexcel International GCSE	Centre Number	Candidate Number
Mathematic Paper 3H	cs A	
		Higher Tier
Monday 8 January 2018 – Time: 2 hours	Morning	Paper Reference 4MA0/3H
You must have: Ruler graduated in centimetres a pen, HB pencil, eraser, calculator.	•	

Instructions

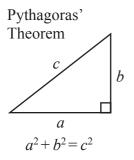
- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
 there may be more space than you need.
- Calculators may be used.
- You must NOT write anything on the formulae page.
 Anything you write on the formulae page will gain NO credit.

Information

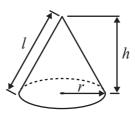
- The total mark for this paper is 100.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.

Advice

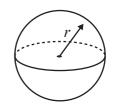
- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

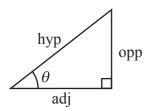

Turn over ▶

P53299A
©2018 Pearson Education Ltd.
1/1/1/1/



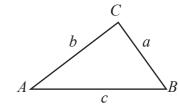
International GCSE MATHEMATICS FORMULAE SHEET – HIGHER TIER


Volume of cone = $\frac{1}{3}\pi r^2 h$


Curved surface area of cone = πrl

Volume of sphere = $\frac{4}{3}\pi r^3$

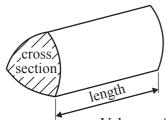
Surface area of sphere = $4\pi r^2$

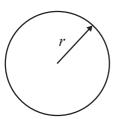


 $adj = hyp \times cos \theta$ $opp = hyp \times sin \theta$ $opp = adj \times tan \theta$

$$or \sin \theta = \frac{\text{opp}}{\text{hyp}}$$
$$\cos \theta = \frac{\text{adj}}{\text{hyp}}$$

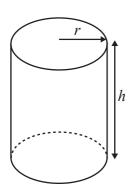
$$\tan \theta = \frac{\text{opp}}{\text{adj}}$$


In any triangle ABC


Sine rule: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

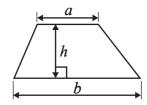
Cosine rule: $a^2 = b^2 + c^2 - 2bc \cos A$

Area of triangle = $\frac{1}{2} ab \sin C$



Volume of prism = area of cross section \times length

Circumference of circle = $2\pi r$


Area of circle = πr^2

Volume of cylinder = $\pi r^2 h$

Curved surface area of cylinder = $2\pi rh$

Area of a trapezium = $\frac{1}{2}(a+b)h$

The Quadratic Equation The solutions of $ax^2 + bx + c = 0$, where $a \ne 0$, are given by

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Answer ALL TWENTY FIVE questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

- 1 Pasquale has a map with a scale of 1:125 000 His house is 14 kilometres from an airport.
 - (a) Work out the distance on Pasquale's map, in centimetres, from his house to the airport.

 	cn
(2)	

Luciana has a map with a scale of 1:n

Her house is 4.8 kilometres from a station.

On Luciana's map, the distance from her house to the station is 19.2 centimetres.

(b) Work out the value of n.

n =	
	(2)

(Total for Question 1 is 4 marks)

2 (a) Use your calculator to work out the value of

$$\sqrt{\frac{8.9 + 2.345}{0.76 \times 2.9}}$$

Write down all the figures on your calculator display.

(2)

(b) Give your answer to part (a) correct to 2 significant figures.

(1)

(Total for Question 2 is 3 marks)

- 3 $A = p^2 + 7q$
 - (a) Work out the value of A when p = -7 and q = 5

$$A = \dots (2)$$

$$A = p^2 + 7q$$

(b) Work out the value of q for which A = 100 when p = 11

$$q =$$
 (3)

(Total for Question 3 is 5 marks)

4 Stephen has a biased 5-sided spinner.

He spins the spinner 80 times.

His score each time is the number that the spinner lands on.

The table shows information about his scores.

Number on spinner	Frequency
1	5
2	12
3	16
4	32
5	15

(a) Find Stephen's median score.

								(1	7)	1	١								

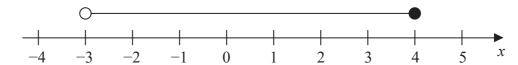
(b) Work out Stephen's mean score.

(3)

Stephen is going to spin the spinner once more.

(c) Use the information in the table to find an estimate for the probability that the spinner will land on an even number.

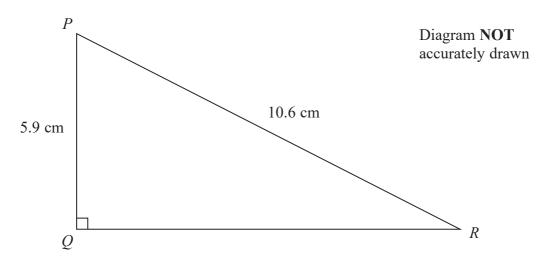
(2)


(Total for Question 4 is 7 marks)

(a) Solve the equation 3(1-2y) = 2y - 7Show clear algebraic working.

(3)

(b) Write down the inequality shown on the number line.



(2)

(c) Solve the inequality $2m + 13 \ge 8$

(Total for Question 5 is 7 marks)

6

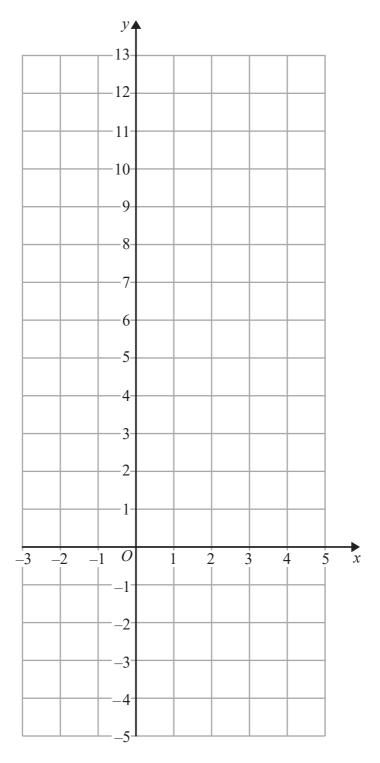
(a) Work out the length of *QR*. Give your answer correct to 3 significant figures.

(3)

(b) Work out the size of angle *PRQ*. Give your answer correct to 1 decimal place.

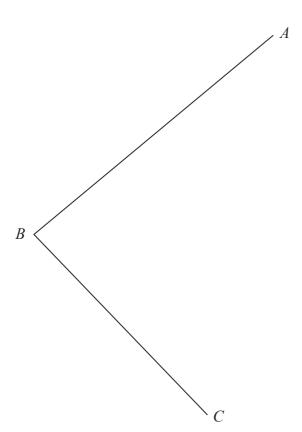
(3)

The length of a line is 12.4 cm correct to one decimal place.


(c) Write down the upper bound for the length of the line.

(1)

(Total for Question 6 is 7 marks)



7 On the grid, draw the graph of y = 5 - 3x for values of x from -2 to 3

(Total for Question 7 is 3 marks)

8 Use ruler and compasses only to construct the bisector of angle *ABC*. You must show all your construction lines.

(Total for Question 8 is 2 marks)

Diagram **NOT** accurately drawn

The diagram shows three sides, AB, BC and CD, of a regular n-sided polygon.

The size of each interior angle of the polygon is $(4x + 28)^{\circ}$ The size of each exterior angle of the polygon is $(x - 13)^{\circ}$

Work out the value of n.

n =

(Total for Question 9 is 4 marks)

10 The straight line L is parallel to the line with equation 2y + 8x = 5 L passes through the point with coordinates (2, 3)

Find an equation for L.

(Total for Question 10 is 3 marks)

DO NOT WRITE IN THIS AREA

11 On 1st January 2016 Celyn buys a laptop for \$330 The value of the laptop decreases by 23% each year.

Work out the value of the laptop on 1st January 2019 Give your answer correct to the nearest dollar.

(Total for Question 11 is 3 marks)

12 Solve
$$\frac{x+4}{3} + \frac{2x+3}{4} = 7$$

Show clear algebraic working.

$$\chi =$$

(Total for Question 12 is 3 marks)

12	TC1 1	C 1	1	· 17 1	. 2 57	7 107
13	The number	of people	e living	in Tokvo	1S 3.3	$/ \times 10'$

(a) Write 3.57×10^7 as an ordinary number.

(1

The land area of Tokyo is 1.35×10^4 square kilometres.

(b) Work out the mean number of people per square kilometre living in Tokyo. Give your answer in standard form, correct to 2 significant figures.

(2)

(Total for Question 13 is 3 marks)

14 Fifteen students were asked how many countries they had visited. Here is a list of the results.

1 2 3 3 4 5 5 6 6 7 8 11 11 13 15

Find the interquartile range of the number of countries visited.

(Total for Question 14 is 2 marks)

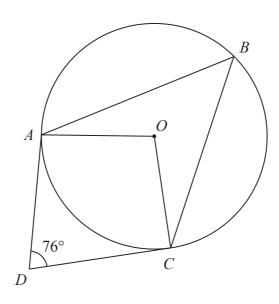


Diagram **NOT** accurately drawn

A, B and C are points on a circle, centre O. DA and DC are tangents to the circle. Angle $ADC = 76^{\circ}$

Work out the size of angle ABC.

.....

(Total for Question 15 is 3 marks)

16 Use algebra to show that the recurring decimal $0.3\dot{4}\dot{5} = \frac{19}{55}$

(Total for Question 16 is 2 marks)

17 Make *a* the subject of $x = \sqrt{\frac{2b - a}{7 - am}}$

(Total for Question 17 is 4 marks)

7 cm
Flask A

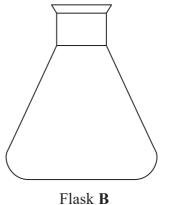


Diagram **NOT** accurately drawn

The diagram shows two mathematically similar flasks, flask **A** and flask **B**.

Flask **A** has a height of 7 cm and a surface area of 132 cm² Flask **B** has a surface area of 297 cm²

(a) Work out the height of flask B.

(2)

The volume of flask **B** is 567 cm³

(b) Work out the volume of flask A.

.....cm³


(Total for Question 18 is 4 marks)

19 The table gives information about the distances, in kilometres, travelled by 120 people to get to an airport.

Distance travelled (d km)	Frequency
$0 < d \leqslant 10$	33
$10 < d \leqslant 25$	39
$25 < d \leqslant 45$	36
$45 < d \leqslant 60$	12

(a) On the grid below, draw a histogram for this information.

(3)

One of these people is to be selected at random.

(b) Find an estimate for the probability that this person travelled more than 30 km to get to the airport.

(2)

(Total for Question 19 is 5 marks)

20 (a)
$$\sqrt{50} + \sqrt{128} - \sqrt{200} = n\sqrt{2}$$

where n is an integer.

Find the value of n.

Show each stage of your working.

$$n = \dots$$
 (2)

Given that a is a prime number,

(b) simplify
$$\frac{5\sqrt{a} + a}{10\sqrt{a}}$$

Give your answer in the form $x + y\sqrt{a}$, where x and y are fractions. Show your working clearly.

(2)

(Total for Question 20 is 4 marks)

21 Factorise completely $(10a - b)^2 - (2a - 5b)^2$

(Total for Question 21 is 3 marks)

22 When a biased coin is thrown 5 times, the probability of getting 5 heads is $\frac{32}{3125}$ Work out the probability of getting 4 heads and 1 tail when the coin is thrown 5 times.

(Total for Question 22 is 3 marks)

23 f is the function such that $f(x) = \frac{3x}{x-2}$ where $x \neq 2$

g is the function such that $g(x) = \frac{4x}{5}$

(a) Find gf(-4)

(b) Express the composite function fg in the form fg(x) = ... Give your answer as a single fraction in its simplest form.

$$fg(x) =$$
 (3)

(c) Express the inverse function f^{-1} in the form $f^{-1}(x) = ...$

$$f^{-1}(x) = \dots \tag{3}$$

(Total for Question 23 is 8 marks)

A = A = A = A O = 3c C

Diagram **NOT** accurately drawn

OABC is a parallelogram.

$$\overrightarrow{OA} = 4\mathbf{a}$$
 $\overrightarrow{OC} = 3\mathbf{c}$

The point X is such that CBX is a straight line and CB : BX = 2 : 3

The point Y is such that $\overrightarrow{CY} = 2\overrightarrow{AX}$

Find, in terms of **a** and **c**, the vector \overrightarrow{OY} Give your answer in its simplest form.

(Total for Question 24 is 3 marks)

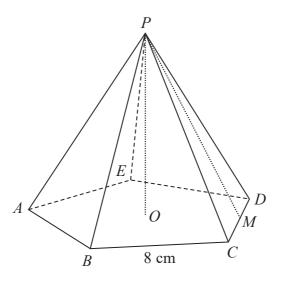


Diagram **NOT** accurately drawn

The diagram shows a pyramid with horizontal base *ABCDE*. *ABCDE* is a regular pentagon, centre *O* and side 8 cm.

The vertex P is vertically above O. M is the midpoint of CD. OP = 10 cm.

Calculate the size of angle *APM*. Give your answer correct to 1 decimal place.

(Total for Question 25 is 5 marks) TOTAL FOR PAPER IS 100 MARKS

BLANK PAGE

Do NOT write on this page.